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Abstract. We outline the basic theory of binary operators and algebraic

categories.

1. Binary Operators

Definition 1. Let A be a set. A binary operator on A is a function

∗ : A×A→ A.

If ∗ is a binary operator on A, and a1, a2 ∈ A, we write a1 ∗ a2 to mean ∗(a1, a2).

A binary operator is simply something that takes two elements of a set and gives
back a third element of the same set.

Example 1. Let R be the set of real numbers. Then + : R × R → R, given by
+(x, y) = x+ y, is a binary operator. Also · : R× R→ R, given by ·(x, y) = xy, is
a binary operator.

In general, in the sets N, Z, Q, R, and C, addition and multiplication are binary
operators.

Example 2. Let ~v, ~w ∈ R3, and define the cross product, denoted ~v × ~w, to be
the unique vector in R3 which is perpendicular to both ~v and ~w, whose length is
the area of the parallelogram determined by ~v and ~w, and which is oriented by the
right hand rule. This defines a binary operation

× : R3 × R3 → R3.

Example 3. Let X be a set. The power set of X, denoted P(X), is the set of all
subsets of X:

P(X) = {A | A ⊂ X}.
Let X be a set and let P(X) be the power set of X. Then union, intersection,

and complement are binary operators on P(X), defined by

• Union: A ∪B = {x | x ∈ A or x ∈ B}
• Intersection: A ∩B = {x | x ∈ A and x ∈ B}
• Complement: ArB = {x | x ∈ A and x /∈ B}
• Symmetric Difference: A4B = (A ∪B) r (A ∩B)

Example 4. Let X be a set. A permutation of X is a bijective function from X
to X. The symmetry group of X, denoted Sym(X), is the set of all permutations
of X:

Sym(X) = {α : X → X | α is bijective}.
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2. Properties of Binary Operators

Definition 2. Let A be a set and let ∗ : A×A→ A be a binary operator on A.
We say that ∗ is commutative if for every a, b ∈ A we have

a ∗ b = b ∗ a.

We say that ∗ is associative if for every a, b ∈ A we have

(a ∗ b) ∗ c = a ∗ (b ∗ c).

We say that e ∈ A is an identity element for ∗ if for every a ∈ A we have

e ∗ a = a ∗ e = a.

Let be e is an identity for ∗. We say that b ∈ A is an inverse for a ∈ A if

a ∗ b = b ∗ a = e.

If a ∈ A has an inverse, we say that a is invertible

Next, we show that if identity elements are unique, and if the operation is asso-
ciative, inverses are unique.

Proposition 1. Let A be a set and let ∗ be a binary operator on A. Let e and f
be identities for ∗. Then e = f .

Proof. We see that e ∗ f = f since e is an identity, but also e ∗ f = e since f is an
identity. Thus e = f . �

Proposition 2. Let A be a set and let ∗ be an associative binary operator on A,
with unique identity element e. Let a ∈ A and let b and c be inverses of a with
respect to e. Then b = c.

Proof. We see that a ∗ b = e, and applying c on the left gives c ∗ (a ∗ b) = c ∗ e = c.
But if ∗ is associative, c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b, so c = b. �

Thus, we see that if an identity exists, it is unique; thus it makes sense to refer to
inverses with respect to an operation, as opposed to, with respect to an operation
and a given identity.

Definition 3. Let A be a set and let ∗, � be binary operators on A. We say that
� distributes over ∗ if, for all a, b, c ∈ A, we have

(LD) a � (b ∗ c) = (a ∗ b) � (a ∗ c);
(RD) (a ∗ b) � c = (a ∗ c) � (b ∗ c).

We call (LD) the left distributive property, and we call (RD) the right distributive
property. Of course, if � is commutative, these properties are equivalent.

Example 5. In the set of real numbers, multiplication distributes over addition,
and exponentiation distributes over multiplication.

Example 6. In the set of vectors in R3, cross production is left and right dis-
tributive over vector addition; this, in spite of the fact that cross product in not
commutative.
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3. Standard Notation

It is very common that binary operations be named addition or multiplication,
even if the elements of the set are not numbers in the common sense.

If the operation on A is named addition and denoted +, then it is standard
that the identity element be named zero and denoted 0 and that the inverse of a
is denoted −a. By convention, one may assume that an operation denoted by + is
commutative and associative. If n is a natural number and a ∈ A, then na means
a added to itself n times.

If the operation on A is denoted ·, it is usually but not always called multipli-
cation and the · is dropped, so that ab means a · b. The identity element in this
notation is usually called one and written 1. The inverse of a, if it exists, is denoted
a−1. If n is a natural number and a ∈ A, the an means a multiplied by itself n
times.

When people refer to general binary operations, usually multiplicative notation
is used, since it is the simplest. We may use ∗ to mean a generic binary operation,
e to mean a generic identity, and â be mean a generic inverse.

4. Closure

Let ∗ : A×A→ A be a binary operator on a set A and let B ⊂ A. We say that
B ⊂ A is closed under the operation of ∗ if for every b1, b2 ∈ B, we have b1 ∗b2 ∈ B.

Let B ⊂ A, and suppose that B is closed under the operation ∗. Then restriction
of ∗ to B produces a binary operation on B. If ∗ is commutative or associative on
A, it is easy to see that the restriction of ∗ to B is also commutative or associative,
respectively. If e is an identity for ∗ in A, and e ∈ B, then e is an identity for ∗ in
B. Similarly, if e, b, c ∈ B, and c is an inverse for b in A, then c is an inverse for b
in c.

Example 7. Let E be the set of even integers. Then E is closed under the oper-
ations of addition and multiplication of integers. Indeed, the sum of even integers
is even, and the product of even integers is even.

Let O be the set of odd integers. Then O is closed under multiplication. However,
O is not closed under addition, because the sum of two odd integers is even.

Example 8. Let B = {a+ b
√

2 ∈ R | a, b ∈ Q}. Then B is closed under addition

and multiplication of real numbers. For example, if a1 + b1
√

2 and a2 + b2
√

2 are
two element of B, then

(a1 + b1
√

2) + (a2 + b2
√

2) = (a1 + a2) + (b1 + b2)
√

2 ∈ B
and

(a1 + b1
√

2)(a2 + b2
√

2) = (a1a2 + 2b1b2) + (a1b2 + a2b1)
√

2 ∈ B.
Note that these results are in B because Q itself is closed under addition and
multiplication. Therefore a1a2 + 2b1b2 ∈ Q, and so forth.

Example 9. Let X be a set and let Y ⊂ X. Then P(Y ) ⊂ P(X), and the subset
P(Y ) is closed under the operations of intersection and union of subsets of X.
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5. Examples

Example 10. The real numbers have two binary operations, addition and mul-
tiplication. Each is commutative and associative. The additive identity is 0, and
the multiplicative identity is 1. Every element a has an additive inverse −a, and if
a 6= 0, it has a multiplicative inverse a−1 = 1

a .
The subset Q, Z, and N of R each contain 0 and 1, and these act as additive

and multiplicative identities in these sets. Every nonzero rational number has an
additive and multiplicative inverse. The integers have additive inverses but not
multiplicative inverses. The natural numbers do not contain additive inverses.

Example 11. Let X be a set and consider intersection and union of subsets of X.
These are operations on P(X) which are commutative and associative. Intersection
has an identity element, which is the entire set X, since for A ⊂ X, we have
A ∩ X = A. Union also has an identity element, which is ∅. Neither of these
operations supports inverses.

However, the operation of symmetric difference on P(X), defined by

A4B = (A ∪B) r (A ∩B),

is commutative, associative, and invertible. The identity element is ∅, and the
inverse of A ∈ P(X) is itself.

Example 12. The standard dot product on Rn is defined by

~v · ~w = v1w1 + · · ·+ vnvw,

where ~v = (v1, . . . , vn) and ~w = (w1, . . . , wn). Note that for n > 1, this is NOT a
binary operator, since is a function

Rn × Rn → R;

to be a binary operator on Rn, the codomain has to be Rn.

Example 13. Let X be a set and consider composition of permutations of X. This
operation on Sym(X) is associative, because composition of functions is always as-
sociative. It is also invertible. The identity element for this operation is the identity
function idX . The inverse of a permutation exists because bijective functions are
always invertible.

However, composition of permutations is not commutative. For example, let
X = {1, 2, 3}. Let φ ∈ Sym(X) be given by (1 7→ 2, 2 7→ 3, 3 7→ 1) and let
ψ ∈ Sym(X) be given by (1 7→ 2, 2 7→ 1, 3 7→ 3). Then φ◦ψ = (1 7→ 3, 2 7→ 2, 3 7→ 1)
but ψ ◦ φ = (1 7→ 1, 2 7→ 3, 3 7→ 2). Thus φ ◦ ψ 6= ψ ◦ ψ.

Example 14. Let X be a set and let F(X,X) be the set of all functions, not nec-
essarily bijective, from X into itself. Composition is a binary operator on F(X,X),
and Sym(X) is a closed under this operation. The same identity element idX exists
in this set. However, not every element is invertible; in fact, Sym(X) is the subset
of invertible elements.

Let h ∈ F(X,X). This is the same as saying h : X → X. For each n ∈ N, define
the function hn : X → X in the natural way. For n = 0, h0 = idX . For n = 1,
h1 = h. However, h2 = h ◦ h, h3 = h ◦ h ◦ h, and in general,

hn = h ◦ · · · ◦ h (n times).
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Example 15. An m×n matrix with entries in R is an array of elements of R with
m rows and n columns. The entries of a matrix are often labeled aij , where this
is the entry in the ith row and jth column. We may write such a matrix with the
notation (aij).

An m× n matrix A = (aij) may be added to an m× n matrix B = (bij) to give
an m× n matrix AB = C = (cij) by the formula

cij = aij + bij .

An m× n matrix A = (aij) may be multiplied by an n× p matrix B = (bjk) to
give an m× p matrix AB = C = (cik) by the formula

cik =

n∑
j=1

aijbjk;

thus the ikth entry of C is the dot product of the ith row of A with the kth column
of B.

Let Mn(R) be the set all n× n matrices over R. Then addition of matrices is a
binary operation on Mn(R) which is commutative, associative, and invertible. Also,
multiplication of matrices is a binary operation on Mn(R) which is associative and
has an identity. The identity is simply the matrix given by aij = 1 if i = j and
aij = 0 otherwise. However, this operation is not commutative, and there are many
elements which do not have inverses.

6. Binary Operations in the C# Programming Language

In the context of a programming language, the notion of types corresponds to
what otherwise would be sets. Only those operators that take two things of the
same type, and return a thing of that type, would be considered to be binary
operators, according to our definition. We list some of these for the types byte,
bool, and string.

Type Name Symbol Associative? Commutative? Identity Inverses?

byte Addition + Yes Yes 0 Yes
Multiplication * Yes Yes 1 No
Subtraction - No No 0 Yes
Division / No No
Remainder % No No
Bitwise And & Yes Yes 255 No
Bitwise Or | Yes Yes 0 No
Bitwise Xor ^ Yes Yes 0 Yes
Shift Left << No No
Shift Right >> No No

bool Logical And && Yes Yes true No
Logical Or || Yes Yes false No
Equal == Exercise Yes
Not Equal != Exercise Yes

string Concatenation + Yes No "" No
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7. Exercises

Exercise 1. In each case, we define a binary operation ∗ on R. Determine if ∗ is
commutative and/or associative, find an identity if it exists, and find any invertible
elements.
(a) x ∗ y = xy + 1;
(b) x ∗ y = 1

2xy;
(c) x ∗ y = |x|y.

Exercise 2. Consider the plane R2. Define a binary operation ∗ on R2 by

(x1, y1) ∗ (x2, y2) = (
x1 + x2

2
,
y1 + y2

2
).

Thus the “product” of two points under this operation is the point which is midway
between them. Determine if ∗ is commutative and/or associative, find an identity
if it exists, and find any invertible elements.

Exercise 3. Let I be the collection of all open intervals of real numbers. We
consider the empty set to be an open interval.
(a) Show that I is closed under the operation of ∩ on P(R).
(b) Show that I is not closed under the operation of ∪ on P(R).

Exercise 4. Let X and Y be sets and let ∗ : Y ×Y → Y be a binary operation on
Y which is commutative, associative, and invertible. Let f : X → Y be a bijective
function. Define an operation � on X by

x1 � x2 = f−1(f(x1) ∗ f(x2)).

Show that � is commutative, associative, and invertible.

Exercise 5. Let X and Y be sets and let ∗ : Y × Y → Y be a binary operation
on Y . Let F(X,Y ) be the set of all functions from X to Y . Show that ∗ induces a
binary operation, which may also be called ∗, on F(X,Y ).

Exercise 6. Let X be a set and let ∗ : X ×X → X be a binary operation on X
which is associative and invertible. Show that ∗ induces a binary operation, which
may also be called ∗, on P(X). Is it associative? Does it have an identity? Is it
invertible?

Exercise 7. In the C# programming language, the “is equal to ” operator ==

is a binary operator only for the type bool. Is it associative? Prove or give a
counterexample. Repeat this for !=.
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